푸리에 변환
-
푸리에 변환은 차원을 확장시켜 파형을 분해한다.Math♾️/Fourier Analysis 2023. 5. 30. 14:56
일반적으로 코사인 그래프는 다음과 같이 x(시간) 축에 대하여 y(진폭) 축 방향으로 위, 아래로 왔다 갔다 하면서 나타난다. 시간에 따른 점의 위치를 나타내는 코사인 함수를 각 시간 t에 대한 진폭 값들을 y축에 사영함으로써 시간의 경과를 나타내는 x축을 점의 움직임으로 전환하여 1차원 상에서 표현할 수 있다. 이와 같이 코사인 함수를 일차원상에서 나타내게 되면 시간이 무한이 증가해도 점은 수평면 상에서 좌우로 왔다 갔다 하며 반복적으로 움직일 뿐이다. 이렇게 주기성을 가지는 움직임의 형태를 'sinusodial'이라고 한다. 시간 요소를 점의 움직임으로 나타내면서 일차원 상에서 코사인 그래프를 나타낼 수 있게 되었다. 이 방법을 이용하여 점의 움직임을 2차원으로 확대해 보자. 하나의 좌표축으로 하나의..
-
라플라스 변환은 푸리에 변환의 일반형이다.Math♾️/Fourier Analysis 2022. 9. 23. 22:07
푸리에 변환 푸리에 변환은 주기 함수의 주기를 무한대로 함으로써 파형의 주기성을 제거하고 파형자체만 남겼다. 이를 진동수 축에 사영시킴으로써 시간에 대하여 나타나던 파형을 진동수에 대해 나타낼 수 있었다. 푸리에 변환을 하기 위해서는 대상이 되는 함수가 주기를 가지고 있어야한다. (하나의 구간에 파형의 전체가 나타나야한다.) 주기를 가진 함수는 주기를 무한대로 보내어 하나의 구간에 대해서 확대되어 나타내면 양쪽값이 0에 수렴한다. 하지만 주기함수가 아닌 일반적인 함수에서 양쪽 값 모두 0에 수렴하지 않는 경우에 푸리에 변환을 적용할 수 가 없다. 라플라스 변환 라플라스 변환은 푸리에 변환을 적용할 수 없는 함수에 대하여 푸리에 변환을 가능하게 한 방법이다. Heaviside 계단 함수를 예로 들면 아래와..
-
합성 곱과 푸리에 변환Math♾️/Fourier Analysis 2022. 9. 6. 14:13
Convolution 합성곱 (convolution)은 하나의 함수와 또 다른 함수를 반전 이동한 값을 곱한 다음 구간에 대해 적분하여 새로운 함수를 구하는 연산자이다. 두개의 함수 $f$와 $g$가 있을 때 두 함수의 합성곱은 다음과 같이 나타난다. 합성곱 연산은 두 함수 f, g 가운데 하나의 함수를 반전(reverse), 전이(shift)시킨 다음, 다른 하나의 함수와 곱한 결과를 적분하는 것을 의미한다. 위의 경우에는 함수 $g$를 반전후 전이시킨 경우이다. 위와 같이 나타내면 함수 $f$를 반전후 전이시킨 경우이다. 어떠한 함수를 반전후 전이시켰는지와 상관없이 두 식은 형태는 다르지만 항상 같은 값을 갖는다. 함수 $f(t)$와 $g(t)$가 위와 같이 주어졌다. 이 함수들을 시간에 대한 입력이..
-
The Fourier Transform and DerivativesMath♾️/Fourier Analysis 2022. 9. 6. 11:54
The Fourier Transform and Derivatives 함수 $f(x)$의 푸리에 변환과 푸리에 역변환 식은 다음과 같다. 함수 $f(x)$ x에 대하여 미분한 것의 푸리에 변환을 구하는 과정은 다음과 같다. 1. 푸리에 변환 식에 $f(x)$대신 $f'(x)$를 넣는다. 2. $f'(x)$를 $dv$ $e^{-iwx}$를 $u$로 보고 부분적분을 한다. 함수 $f'(x)$의 푸리에 변환은 함수 $f(x)$를 먼저 푸리에 변환한 뒤 $iw$ 항을 곱해줌으로서 얻을 수 있다. 위와 같이 푸리에 변환시 미분항이 변환되는 성질을 이용하면 함수 $f(x)$가 미분 계산이 어려운 경우 푸리에 변환을 통해 함수 $f'(x)$를 푸리에 변환한 것을 먼저 구한뒤 이를 푸리에 역변환 함으로서 함수 $f'(x..
-
푸리에 변환에 대하여Math♾️/Fourier Analysis 2022. 9. 5. 23:13
푸리에 급수 푸리에 급수란 임의의 주기 함수 $f(x)$를 각 진동수 $k$로 분해하는 과정이다. 분해된 각 진동수 $k$는 실수 영역에서는 sin 과 cos를 기저로 하여 함수 $f(x)$와 내적을 통해서 해당 진동수를 갖는 파 중 함수 $f(x)$를 구성하는 특정 $k$ 진동수의 파형을 나타내었다. 복소수 영역에서는 각 진동수 $k$를 $\psi_k$($k$는 서로 다른 정수)를 직교 기저로 하여 함수 $f(x)$와의 내적을 통하여 파형을 나타 내었다. - 주기가 $2\pi$인 경우 푸리에 급수의 형태 - 일반화한 주기가 $L$일때 푸리에 급수의 형태 - 복소수 공간에서 서로 직교하는 $\psi_k$를 직교 기저로 하여 각 진동수 $k$를 분해하였을 때 푸리에 급수의 형태 ( * 주기를 $2L$로 하..