Gibbs Phenomena
-
Gibbs PhenomenaMath♾️/Fourier Analysis 2022. 9. 2. 23:19
Gibbs Phenomena 위와 같이 함수에 급격하게 값이 뛰는 점이 존재할 때 이를 불연속 점이라고 한다. 불연속점이 존재하는 함수를 푸리에 급수로 나타내게 되면 아래와 같이 나타난다. 불연속점이 존재하는 근방에서 푸리에 급수를 통해 근사시킨 값들이 진동하는 것을 알 수 있다. 이러한 현상을 깁스 현상이라고 한다. 임의의 주기함수를 푸리에 급수를 이용해 각 진동수 $k$로 분해할 때 진동수 $k$의 파형은 $cos(kx)$과 $sin(kx)$를 기저로 하여 구성되게 된다. 이때 $cos(kx),sin(kx)$ 모두 연속 함수이기 때문에 이들을 결합하여 값이 급격하게 변화하는 불연속 값을 나타내기 어렵다. 파이썬을 이용하여 나타낸 gibbs 현상 import numpy as np import matpl..